The Kelly Growth Criterion

Niels Wesselhöfft Wolfgang K. Härdle

International Research Training Group 1792 Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin

http://irtg1792.hu-berlin.de http://lvb.wiwi.hu-berlin.de

Portfolio choice

Playing Blackjack

Figure 1: 'Ed' Thorp

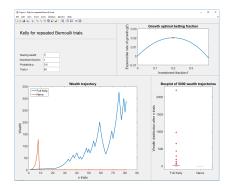
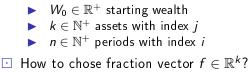


Figure 2: Matlab GUI

Portfolio choice

 \boxdot Wealth for discrete returns $X_i \in \mathbb{R}^k$

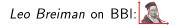
$$W_n(f) = W_0 \prod_{i=1}^n \left(1 + \sum_{j=1}^k f_j X_{j,i} \right)$$
(1)



Managing Portfolio Risks

Two main strands

- 1. Mean-Variance approach: Markowitz (1952), Tobin (1958), Sharpe (1964) and Lintner (1965)
- Kelly growth-optimum approach: Kelly (1956), Breiman (1961) and Thorp (1971)



Outline

- 1. Motivation \checkmark
- 2. Bernoulli Kelly (1956)
- 3. Gaussian Thorp (2006)
- 4. General i.i.d. Breiman (1961)
- 5. Appendix

Arithmetic mean maximization

 Consider n favorable Bernoulli games with probability ¹/₂
 For P(X = 1) = p = 1, investor bets everything, f = 1

$$W_n = W_0 2^n \tag{2}$$

: Uncertainty - maximizing the expectation of wealth implies f = 1

$$\mathsf{E}(W_n) = W_0 + \sum_{i=1}^{n} (p-q) \mathsf{E}(fW_{n-1}), \qquad (3)$$

Leads to ruin asymptotically

$$\mathsf{P}\left(\{W_n \le 0\}\right) = \mathsf{P}\left\{\lim_{n \to \infty} \left(1 - p^n\right)\right\} \to 1 \tag{4}$$

Minimizing risk of ruin

Alternative: minimize the probability of ruin

 \odot For f = 0

$$\mathsf{P}\left(\{W_n \le 0\}\right) = 0 \tag{5}$$

 Minimum ruin strategy leads also to the minimization of the expected profits as no investment takes place

Geometric mean maximization

 \boxdot Gambler bets a fraction of his wealth with *m* games won

$$W_n = W_0 (1+f)^m (1-f)^{n-m}$$
(6)

 Exponential rate of growth per trial (log of the geometric mean)

$$G_n(f) = \log\left(\frac{W_n}{W_0}\right)^{\frac{1}{n}} = \log\left\{(1+f)^{\frac{m}{n}}(1-f)^{\frac{n-m}{n}}\right\}$$
(7)

$$= \left(\frac{m}{n}\right)\log(1+f) + \left(\frac{n-m}{n}\right)\log(1-f)$$
(8)

Geometric mean maximization

■ By Borel's law of large numbers

$$E\{G_n(f)\} = g(f) = p \cdot \log(1+f) + q \cdot \log(1-f)$$
 (9)

• Maximizing g(f) w.r.t. f:

$$g'(f) = \left(\frac{p}{1+f}\right) - \left(\frac{q}{1-f}\right) = \left\{\frac{p-q-f}{(1+f)(1-f)}\right\} = 0$$
(10)
$$\Rightarrow f = f^* = p-q, \quad p \ge q > 0$$
(11)

$$* t = t^* = p - q, \quad p \ge q > 0$$

 \boxdot Second derivative according to f

$$g''(f) = -\left\{\frac{p}{(1+f)^2}\right\} - \left\{\frac{q}{(1-f)^2}\right\} < 0$$
 (12)

Closed form for Bernoulli trials

⊡ Growth optimal fraction, under Bernoulli trials:

$$f^* = p - q \tag{13}$$

 Maximizes the expected value of the logarithm of capital at each trial

$$g(f^*) = p \cdot \log(1 + p - q) + q \cdot \log(1 - p - q)$$
(14)
= $p \cdot \log(p) + q \cdot \log(q) + \log(2) > 0$ (15)

• A link to information theory

Bernoulli example, p = 0.6

 \boxdot Exponential rate of asset growth for binary channel with p=0.6

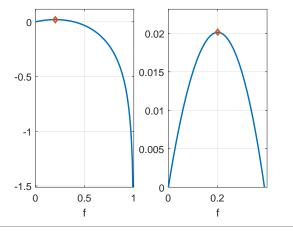


Figure 3: Bernoulli Exponential growth rate g(f)

Bernoulli

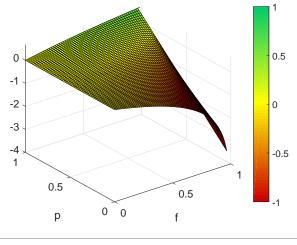


Figure 4: Bernoulli - Exponential growth rate g(f,p)

Gaussian (One-dimensional)

- \boxdot X ~ F with E(X) = μ and Var(X) = σ^2
- \Box Return of the risk free asset r > 0

• Wealth given investment fractions and restriction $\sum_{i=1}^{k} f_i = 1$

$$W(f) = W_0 \{ 1 + (1 - f)r + fX \}$$
(16)

$$= W_0 \{1 + r + f(X - r)\}$$
(17)

Gaussian (One-dimensional)

🖸 Maximize

$$g(f) = E\{\log W_n(f)\} = E\{G(f)\} = E\log\{W_n(f)/W_0\}$$
(18)

☑ Wealth after *n* periods

$$W_n(f) = W_0 \prod_{i=1}^n \{1 + r + f(X_i - r)\}$$
(19)

 \boxdot Taylor expansion of

$$\mathsf{E}\left[\log\left\{\frac{W_n(f)}{W_0}\right\}\right] = \mathsf{E}\left[\sum_{i=1}^n \log\left\{1 + r + f(X_i - r)\right\}\right]$$
(20)

Gaussian - Thorp (2006) -

Gaussian (One-dimensional)

Given
$$\log(1+x) = x - \frac{x^2}{2} + \cdots$$

 $\log\{1+r+f(X-r)\} = r + f(X-r) - \frac{\{r+f(X-r)\}^2}{2} + \cdots$
(21)
 $\approx r + f(X-r) - \frac{X^2 f^2}{2}$
(22)

Taking sum and expectation

$$\mathsf{E}\left[\sum_{i=1}^{n}\log\left\{1+r+f(X_{i}-r)\right\}\right] \approx r+f(\mu_{n}-r)-\frac{\sigma_{n}^{2}f^{2}}{2}$$
(23)

 \bigcirc Myopia: taking $\sum_{i=1}^{n} X_i$ has no impact on the solution

Gaussian (One-dimensional)

Result of the Taylor expansion

$$g(f) = r + f(\mu - r) - \sigma^2 f^2 / 2 + \mathcal{O}(n^{-1/2}).$$
 (24)

$$\ \ \, {\rm For} \ n\longrightarrow\infty, \ {\mathcal O}(n^{-1/2})\longrightarrow 0$$

$$g_{\infty}(f) = r + f(\mu - r) - \sigma^2 f^2/2.$$
 (25)

 \boxdot Differentiating g(f) according to f

$$\frac{\partial g_{\infty}(f)}{\partial f} = \mu - r - \sigma^2 f = 0 \nleftrightarrow f^* = \frac{\mu - r}{\sigma^2} = \sigma^{-1} \text{MPR}$$
(26)

 \boxdot Betting the optimal fraction f^* leads to growth rate

$$g_{\infty}(f^*) = \frac{(\mu - r)^2}{2\sigma^2} + r.$$
 (27)

 $\boxdot \ g_\infty(f)$ is parabolic around f^* with range $0 \leq f^* \leq 2f^*$

Gaussian - Thorp (2006) -

Gaussian - $\mu = 0.03$, $\sigma = 0.15$, r = 0.01

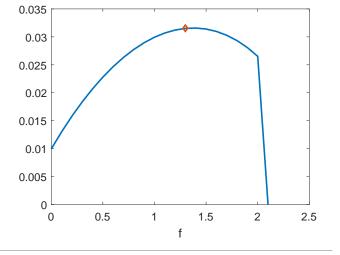


Figure 5: Gaussian approximation - Exponential growth rate g(f)

Gaussian (Multi-dimensional)

 \boxdot $X \sim \mathsf{N}(\mu, \Sigma)$ and risk free rate r > 0

$$W_n(f) = W_0 \left\{ 1 + r + f^\top (X - r) \right\}$$
 (28)

 Taking logarithm and expectations on both sides leads via Taylor series to

$$g(f) = \mathsf{E}\left\{\log(1+r) + \frac{1}{1+r}(\mu - 1r)^{\top}f - \frac{1}{2(1+r)^2}f^{\top}\Sigma f\right\}$$
(29)

⊡ From quadratic optimization (Härdle and Simar, 2015)

$$f^* = \Sigma^{-1}(\mu - 1r)$$
 (30)

$$g_{\infty}(f^*) = r + f^{*\top} \Sigma f^*/2$$
 (31)

Gaussian - Thorp (2006)

Gaussian - $\mu = [0.03 \ 0.08], \ \sigma = [0.15 \ 0.15], \ \rho = 0, \ r = 0.01$

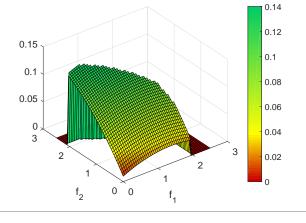


Figure 6: Gaussian approximation - Exponential growth rate g(f)

- 3-7

General i.i.d. - Breiman (1961)

General i.i.d.

 Asymptotic dominance (in terms of wealth) of the Kelly strategy in a general i.i.d. setting in discrete time

for his law joint look haday giving 194 Growth optimal betting fraction 0.03 Kelly for repeated Bernoulli trials Sarting wealth 8-0.01 Wealth trajectory Boxplot of 5000 wealth traject -Full Kely Naive 0.5 200 400 500 600 800 Neive n trials

Figure 8: Matlab GUI

Figure 7: Warren Buffett

General i.i.d. - Breiman (1961)

General i.i.d.

• investment fractions f_i from time i to $n \in \mathbb{N}^+$

- opportunities j to $k \in \mathbb{N}^+$
- Security price vector $p_i = \begin{bmatrix} p_{i,j} \\ \vdots \\ p_{i,k} \end{bmatrix}$ • Return per unit invested $x_i = \begin{bmatrix} \frac{p_{i,j}}{p_{i-1,j}} \\ \vdots \\ \frac{p_{i,k}}{p_{i,k}} \end{bmatrix}$.

Discrete i.i.d. setting

Wealth of the investor in period n

$$W_n(f_n) = W_{n-1}(f_{n-1}) \left\{ f_n^\top x_n \right\}$$
(32)

- \bigcirc $W_n(f_n)$ increases exponentially
- Log-optimal fraction through growth rate maximization at each trial

$$f^* = \underset{f \in \mathbb{R}^k}{\operatorname{argmax}} \operatorname{E} \left\{ \log(W_n) \right\}$$
(33)

Asymptotic outperformance

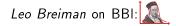
Theorem

- \boxdot Myopic log-optimal strategy $\Lambda^* = [f^* \ \cdots \ f^*]$
- \boxdot Significantly different strategy Λ

$$\mathsf{E}\{\log W_n(\Lambda^*)\} - \mathsf{E}\{\log W_n(\Lambda)\} \longrightarrow \infty, \quad (34)$$

Kelly investor dominates asymptotically

$$\lim_{n \to \infty} \frac{W_n(\Lambda^*)}{W_n(\Lambda)} \xrightarrow{a.s.} \infty$$
(35)



Minimize time to reach goal g

Theorem

$$\exists \alpha \ge 0 \perp \Lambda, g \tag{36}$$

such that

$$E\{N^{*}(g)\} - E\{N(g)\} \le \alpha,$$
 (37)

⊡ ⊥⊥ - independent of

 $\boxdot~\Lambda^*$ asymptotically minimizes the time to reach goal g

Time invariance

Theorem

□ Given a fixed set of opportunities the strategy is

- fixed fraction
- independent of the number of trials n

$$\Lambda^* = [f_1^* \cdots f_n^*], \ f_1^* = \cdots = f_n^*$$
(38)

Bernoulli revisited

Theorem

- Two investors with equal initial endowment, investment fractions f₁ and f₂
- For exponential growth rates

$$G_n(f_1) > G_n(f_2) \tag{39}$$

☑ the Kelly bet dominates asymptotically

$$\lim_{n \to \infty} \frac{W_n(f_1)}{W_n(f_2)} \xrightarrow{a.s.} \infty$$
(40)

Bernoulli revisited

Proof.

 \therefore Difference in exponential growth rates $G_n(f) = \log \left\{ \frac{W_n(f)}{W_0} \right\}^{\frac{1}{n}}$

$$\log\left\{\frac{W_{n}(f_{1})}{W_{0}}\right\}^{\frac{1}{n}} - \log\left\{\frac{W_{n}(f_{2})}{W_{0}}\right\}^{\frac{1}{n}} = \log\left\{\frac{W_{n}(f_{1})}{W_{n}(f_{2})}\right\}^{\frac{1}{n}}$$
(41)

☑ by Borel strong law of large numbers

$$\mathsf{P}\left[\lim_{n\to\infty}\log\left\{\frac{W_n(f_1)}{W_n(f_2)}\right\}^{\frac{1}{n}}\right] > 0 \xrightarrow{a.s.} 1. \tag{42}$$

Bernoulli revisited

Proof.

 \boxdot For $\omega \in \Omega$, there exists $N(\omega)$ such that for $n \ge N(\omega)$,

$$W_0 \exp\{nG(f_1)\} > W_0 \exp\{nG(f_2)\}$$
(43)
$$W_n(f_1) > W_n(f_2)$$
(44)

Asymptotically

$$\lim_{n \to \infty} \frac{W_n(f_1)}{W_n(f_2)} \xrightarrow{a.s.} \infty$$
(45)

Utility functions

□ Three types of utility theories: Thorp (1971)

- Descriptive utility empirical data and mathematical fitting
- Predictive utility derives utility functions out of hypotheses
- Normative utility describe the behavior to achieve a certain goal
- □ The logarithmic utility function is used in a normative way

Conclusion

Comparison of risk management theories

- Markowitz-approach
 - arithmetic mean-variance efficient
 - maximizing single period returns
 - rests on two moments
- Kelly-approach
 - geometric mean-variance efficient
 - maximize geometric rate of multi-period returns
 - utilizes the whole distribution

Information

➤ Closed form for Bernoulli trials

 \square Self-information (uncertainty) of outcome x

$$i(x) = -\log P(x) = \log \frac{1}{P(x)}$$
 (46)

$$i(x) = 0$$
, for $P(x) = 1$ (47)

$$i(x) > 1$$
, for $P(x) < 1$ (48)

• Example: For a fair coin, the change of $P(x = {tail}) = 0.5$

$$i(x) = -\log_2(1/0.5) = 1$$
 bit

Information

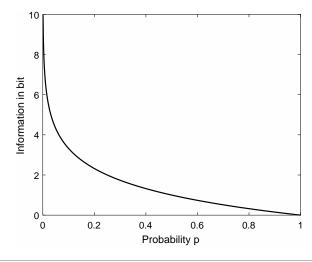


Figure 9: Self information of an outcome given probability p

Entropy

⊡ Entropy as expectation of self-informations (average uncertainty), given outcomes $X = \{X_1, \ldots, X_n\}$

$$H(X) = E\{I(X)\} = -E\{\log P(X)\}$$
(49)
= $-\sum_{x} P(x) \log_2 P(x) \ge 0$ (50)

 \boxdot For two outcomes and p=q=0.5

$$egin{aligned} \mathcal{H}(X) &= -\left(p \log_2 p + q \log_2 q
ight) \ &= -\left(1/2 \log_2 1/2 + 1/2 \log_2 1/2
ight) = 1 \ ext{bit} \end{aligned}$$

Entropy

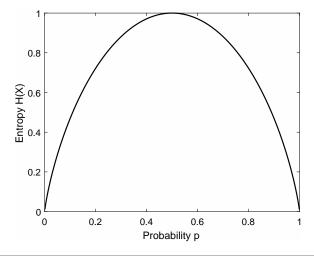


Figure 10: Entropy for two outcomes given probability p (1-p)

Entropy

Joint entropy

$$H(X,Y) = - \mathsf{E} \{ \log \mathsf{P}(X,Y) \}$$
(51)

$$= -\sum_{x,y} \mathsf{P}(x,y) \log \mathsf{P}(x,y)$$
(52)

⊡ Conditional entropy

$$H(X \mid Y) = - \mathsf{E} \{ \log \mathsf{P}(X \mid Y) \}$$
(53)

$$= -\sum_{x,y} \mathsf{P}(x \mid y) \log \mathsf{P}(x \mid y) \tag{54}$$

Noisy binary channel

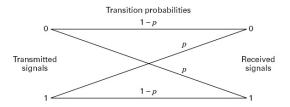


Figure 11: Noisy binary channel

Mutual information

Mutual information

$$I(X;Y) = H(X) - H(X \mid Y)$$
(55)

$$= \mathsf{E}\left\{\log\frac{\mathsf{P}(X\mid Y)}{\mathsf{P}(X)}\right\}$$
(56)

☑ For the binary symmetric channel

$$I(X;Y) = \sum_{x} \sum_{y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$
(57)

$$= q \log(2q) + p \log(2p) \tag{58}$$

$$= p \log p + q \log q + \log(2) \tag{59}$$

Mutual information

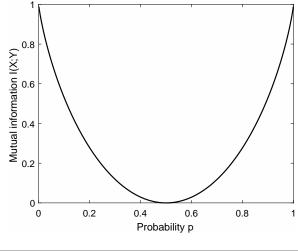


Figure 12: Mutual Information for a binary channel

Mutual information

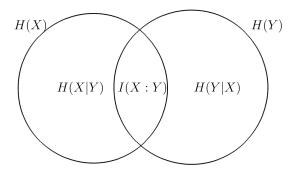


Figure 13: Relation of Entropy and Mutual Information

A link to information theory

\Box I(X; Y) - mutual information

- highest possible rate of information transmission in the presented channel
- also called the channel's information carrying capacity or rate of transmission

Equivalence to equation (14)

$$I(X; Y) = g(f^*)$$
 (60)

➤ Closed form for Bernoulli trials

A link to estimation theory

□ Relative entropy or Kullback-Leibler divergence

$$D(P(x) || Q(x)) = -E\left\{\log \frac{P(x)}{Q(x)}\right\}$$
(61)
= $\sum_{x} P(x) \log \frac{P(x)}{Q(x)} \ge 0$ (62)

Relation to mutual information

$$I(X; Y) = D\{P(x, y) || P(x) P(y)\}$$
(63)

The Kelly Growth Criterion

Niels Wesselhöfft Wolfgang K. Härdle

International Research Training Group 1792 Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin

http://irtg1792.hu-berlin.de http://lvb.wiwi.hu-berlin.de

For Further Reading

Ì J. Kelly

A new interpretation of information rate Bell System Technology Journal, 35, 1956

L. Breiman

Optimal gambling system for favorable games Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, 1, 1961

📄 E. O. Thorp

Portfolio choice and the Kelly criterion Proceedings of the Business and Economics Section of the American Statistical Association, 1971

For Further Reading

Evidence on the growth optimum model The Journal of Finance, 1973

L. C. MacLean, W. T. Ziemba and G. Blazenko Growth versus Security in Dynamic Investment Analysis Management Science, 38(11), 1992

📔 E. O. Thorp

The Kelly criterion in Blackjack, Sports betting and the Stock Market

Handbook of Asset and Liability Management, 2006

