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Motivation 1-2

Portfolio choice

[] Wealth for discrete returns X; € R¥
Wa(F)=Wo [] [14 DX (1)
i=1

» Wy € R" starting wealth
> k € NT assets with index j
» nc N7 periods with index i

] How to chose fraction vector f € Rk?
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Managing Portfolio Risks

Two main strands

1. Mean-Variance approach: Markowitz (1952), Tobin (1958),
Sharpe (1964) and Lintner (1965)

2. Kelly growth-optimum approach: Kelly (1956), Breiman
(1961) and Thorp (1971)

Leo Breiman on BBI:
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Arithmetic mean maximization

(] Consider n favorable Bernoulli games with probability
T <p<1(g=1-p)andoutcome X =1 (1)
[J For P(X =1) = p =1, investor bets everything, f =1

W, = Wp2" (2)

[J Uncertainty - maximizing the expectation of wealth implies
f=1

E(Wa) = Wo+ Y (p—q)E(Wh 1), (3)
i=1
[] Leads to ruin asymptotically

P({Wo<0}) =P { lim (1-p")} 1 (4)
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Minimizing risk of ruin

(] Alternative: minimize the probability of ruin
(] For f =0
P({W,<0})=0 (5)

[J Minimum ruin strategy leads also to the minimization of the
expected profits as no investment takes place
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Geometric mean maximization

[J Gambler bets a fraction of his wealth with m games won
W, = Wo(1+ F)"(1—F)" ™ (6)

[] Exponential rate of growth per trial
(log of the geometric mean)

1

Galf) = log (%3) —log{(1+NTL-N"} (D)

- (Dogan+ () osa-n @)
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Geometric mean maximization

[] By Borel's law of large numbers

E{Gn(f)} = &(f) =p-log(l+f)+q-log(1—f) (9)
[ Maximizing g(f) w.r.t. f:

¢01- (124) - (%) - {eo o) -

+f=f"=p-q, p2qg>0

[] Second derivative according to f
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Closed form for Bernoulli trials

[ Growth optimal fraction, under Bernoulli trials:
f"=p—gq (13)
[] Maximizes the expected value of the logarithm of capital at
each trial

g(f*)=p-log(l+p—q)+q-log(l—p—q)  (14)
= p - log(p) + q - log(q) + log(2) > 0 (15)
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Bernoulli example, p = 0.6

[] Exponential rate of asset growth for binary channel with p=0.6
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Figure 3: Bernoulli Exponential growth rate g(f)
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Bernoulli

».

Figure 4: Bernoulli - Exponential growth rate g(f,p)
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Gaussian (One-dimensional)

[J X ~ F with E(X) = p and Var(X) = o2
[ Return of the risk free asset r > 0

[] Wealth given investment fractions and restriction Zj-;l fi=1

W(f)=Wo{l+(1—Ff)r+1X} (16)
=Wo{l+r+f(X—-r)} (17)
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Gaussian (One-dimensional)

] Maximize

g(f) = E{log Wi(f)} ZE{G(f)}ZElog{Wn(f)/Wo(})
18

(] Wealth after n periods
Wa(f) = Wo [ [ {1+ r+ f(Xi — )} (19)
i=1

[] Taylor expansion of

E [log { le‘fof) H =E [Z log {1+ r+f(X;—r)} (20)

i=1
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Gaussian (One-dimensional)

. 2
[] Given log(1 4+ x) =x — % 4 ---

g (14 r+ F(X — 1)} = r+ F(x —r)— LLHAXZDE

2
(21)
X2f2
M (X =) = (22)
[] Taking sum and expectation

n o2 f2

E ;|Og{1+r—|—f(Xi—r)} xr—l—f(u,,—r)—”T
(23)

[] Myopia: taking > ; X; has no impact on the solution
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Gaussian (One-dimensional)

[ Result of the Taylor expansion
gf)=r+f(u—r)—a*f?/2+0(n"12).  (24)
[J For n — oo, O(n1/2) — 0
goolf) = r+f(u—r) —of2)2. (25)
[ Differentiating g(f) according to f
aggof(f) —p—r—o?f =0 f =T = sIMPR (26)

[] Betting the optimal fraction f* leads to growth rate
2

goo(f*) = (“2;;) T (27)

[) goo(f) is parabolic around f* with range 0 < f* < 2f*
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Gaussian - ¢ =0.03, 0 =0.15, r =10.01
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Figure 5: Gaussian approximation - Exponential growth rate g(f) !
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Gaussian (Multi-dimensional)

[J X ~ N(u, X) and risk free rate r > 0
Wo(F) = Wo {1+ r+f (X =)} (28)

[] Taking logarithm and expectations on both sides leads via
Taylor series to

g(f)=E {Iog(l +r)+ L(u —1r)"f - waZf}
(29)

1+r
[] From quadratic optimization (Héardle and Simar, 2015)
f* =% (u—1r)
goo(f*) =r+ FTXf*)2
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Gaussian -
p=10.03 0.08], ¢ =[0.15 0.15], p =0, r =0.01
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Figure 6: Gaussian approximation - Exponential growth rate g(f)
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General i.i.d.

[] Asymptotic dominance (in terms of wealth) of the Kelly
strategy in a general i.i.d. setting in discrete time

Kelly for repeated Bemoulii trials
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Figure 7: Warren Buf-
fett Figure 8: Matlab GUI




General i.i.d. - Breiman (1961)

General i.1.d.

fij o foj

(] Investment strategy A = | : S =[fi-

fik - fok

» investment fractions f; from time i to n € N*T
> opportunities j to k € NT

pi.j
[] Security price vector p; = |
Pi,k
Pi,j
Pi—1,j
[ Return per unit invested x; = :
Pi,k

Pi—1,k

fn]

4-2
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Discrete i.i.d. setting

(] Wealth of the investor in period n

Wa(fa) = Wo-1(fo1) { £ xn } (32)

[1 W,(f,) increases exponentially

[J Log-optimal fraction through growth rate maximization at
each trial

f* = argmax E {log(W,)} (33)
fERK




General i.i.d. - Breiman (1961)
Asymptotic outperformance
Theorem

[ Myopic log-optimal strategy N* = [f* --- f¥]
) Significantly different strategy N\

E {log Wa(A*)} — E {log Wa(A)} — ox,
C1 Kelly investor dominates asymptotically

lim Wa(1) 2% 50
n—o00 Wn(/\)

4-4
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Minimize time to reach goal g

Theorem

[J Let N(g) be the smallest n, such that W; > g, g >0
[ If equation (34) holds,

Ja>01 A, g (36)

such that
E{N"(g)} —E{N(g)} < a, (37)
(1 L - independent of

(1 A* asymptotically minimizes the time to reach goal g
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Time invariance

Theorem

[ Given a fixed set of opportunities the strategy is

» fixed fraction
» independent of the number of trials n

N =] == 1) (38)

n
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Bernoulli revisited

Theorem

(1 Two investors with equal initial endowment, investment
fractions f; and

(] For exponential growth rates
Gn(f1) > Gn(f2) (39)
(1 the Kelly bet dominates asymptotically

. Wih(h) as.
I n
nroo Wo(f)
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Bernoulli revisited

Proof.

[ Difference in exponential growth rates G,(f) = log { W"(f)}

o0 ) )

] by Borel strong law of large numbers

e ()

>025 1. (42)
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Bernoulli revisited

Proof.
[J For w € Q, there exists N(w) such that for n > N(w),

Woexp {nG(fi)} > Woexp {nG(f)} (43)
Wi(f) > Wi(f2) (44)

(1 Asymptotically

. Wih(f) as.
lim n =
n—oo Wn(f2)




Utility functions - Thorp (1971) 5-1

Utility functions

[ Three types of utility theories: Thorp (1971)
» Descriptive utility - empirical data and mathematical fitting
» Predictive utility - derives utility functions out of hypotheses
» Normative utility - describe the behavior to achieve a certain
goal

[] The logarithmic utility function is used in a normative way
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Conclusion

[] Comparison of risk management theories
» Markowitz-approach

e arithmetic mean-variance efficient
e maximizing single period returns
e rests on two moments

» Kelly-approach

e geometric mean-variance efficient
e maximize geometric rate of multi-period returns
o utilizes the whole distribution




Information theory

Information

[ Self-information (uncertainty) of outcome x

i(x) = —log P(x) = log P(lx

~—

i(x) =0, forP(x) =1
i(x) >1, forP(x) <1

6-1

[ Example: For a fair coin, the change of P (x = {tail}) = 0.5

i(x) = —logy(1/0.5) = 1 bit
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Information

10

Information in bit
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Probability p

Figure 9: Self information of an outcome given probability p
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Entropy

[ Entropy as expectation of self-informations (average
uncertainty), given outcomes X = {Xi,..., Xy}

H(X) = E{I(X)} = —E{log P(X)} (49)
:—ZP ) log, P(x) > 0 (50)
(] For two outcomes and p = g = 0.5

H(X) = —(plogz p + qlog; q)
—(1/2log, 1/2 4+ 1/2logy1/2) = 1 bit
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Entropy
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Figure 10: Entropy for two outcomes given probability p (1-p)



Information theory

Entropy

(] Joint entropy
H(X,Y)=—E{logP(X,Y)}
= *ZP(X,_}/) |OgP(Xay)

X,y
[] Conditional entropy
H(X [ Y) = —E{logP(X [ Y)}
== P(x|y)logP(x|y)

X7.y

6-5




Information theory

Noisy binary channel

Transition probabilities

1-
0 L 0
2l
Transmitted Received
signals p signals
1-p

Figure 11: Noisy binary channel
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Information theory

Mutual information

(] Mutual information

I(X;Y)=H(X)-H(X|Y)
_ PX 1Y)
~e{es e )

(] For the binary symmetric channel
P(x,y)
1(X;Y) P(x,y)lo
ZZ EP)P(y)

=q Iog(2q) + plog(2p)
= plog p + qlog g + log(2)

6-7
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Mutual information

Mutual information 1(X;Y)
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Probability p

Figure 12: Mutual Information for a binary channel
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Mutual information

H(X H(Y)

Figure 13: Relation of Entropy and Mutual Information
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Information theory

A link to information theory

LI /1(X;Y) - mutual information
» highest possible rate of information transmission in the

presented channel
» also called the channel's information carrying capacity or rate

of transmission

[J Equivalence to equation (14)
I(X;Y)=g(f") (60)

» Closed form for Bernoulli trials

».




Information theory

A link to estimation theory

[] Relative entropy or Kullback-Leibler divergence

i, P
D(P(x) 1| Q) =~ E {log g9 }
-y P(x)
= 2 P(x) log Q) >0
[] Relation to mutual information

I(X;Y) = D{P(x,y) [| P(x)P(y)}

6-11
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