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Motivation 1-1

Portfolio choice

� Playing Blackjack

Figure 1: 'Ed' Thorp Figure 2: Matlab GUI



Motivation 1-2

Portfolio choice

� Wealth for discrete returns Xi ∈ Rk

Wn(f ) = W0

n∏
i=1

1 +
k∑

j=1

fjXj ,i

 (1)

I W0 ∈ R+ starting wealth

I k ∈ N+ assets with index j
I n ∈ N+ periods with index i

� How to chose fraction vector f ∈ Rk?
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Managing Portfolio Risks

Two main strands

1. Mean-Variance approach: Markowitz (1952), Tobin (1958),
Sharpe (1964) and Lintner (1965)

2. Kelly growth-optimum approach: Kelly (1956), Breiman
(1961) and Thorp (1971)

Leo Breiman on BBI:
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Arithmetic mean maximization

� Consider n favorable Bernoulli games with probability
1

2
< p ≤ 1 (q = 1− p) and outcome X = 1 (−1)

� For P(X = 1) = p = 1, investor bets everything, f = 1

Wn = W02
n (2)

� Uncertainty - maximizing the expectation of wealth implies
f = 1

E(Wn) = W0 +
n∑

i=1

(p − q)E (fWn−1) , (3)

� Leads to ruin asymptotically

P ({Wn ≤ 0}) = P
{
lim
n→∞

(1− pn)
}
→ 1 (4)
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Minimizing risk of ruin

� Alternative: minimize the probability of ruin

� For f = 0
P ({Wn ≤ 0}) = 0 (5)

� Minimum ruin strategy leads also to the minimization of the
expected pro�ts as no investment takes place
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Geometric mean maximization

� Gambler bets a fraction of his wealth with m games won

Wn = W0(1 + f )m(1− f )n−m (6)

� Exponential rate of growth per trial
(log of the geometric mean)

Gn(f ) = log

(
Wn

W0

) 1
n

= log
{

(1 + f )
m
n (1− f )

n−m
n

}
(7)

=
(m
n

)
log(1 + f ) +

(
n −m

n

)
log(1− f ) (8)
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Geometric mean maximization

� By Borel's law of large numbers

E {Gn(f )} = g(f ) = p · log(1 + f ) + q · log(1− f ) (9)

� Maximizing g(f ) w.r.t. f :

g ′(f ) =

(
p

1 + f

)
−
(

q

1− f

)
=

{
p − q − f

(1 + f )(1− f )

}
= 0

(10)

≺� f = f ∗ = p − q, p ≥ q > 0 (11)

� Second derivative according to f

g ′′(f ) = −
{

p

(1 + f )2

}
−
{

q

(1− f )2

}
< 0 (12)
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Closed form for Bernoulli trials

� Growth optimal fraction, under Bernoulli trials:

f ∗ = p − q (13)

� Maximizes the expected value of the logarithm of capital at
each trial

g(f ∗) = p · log(1 + p − q) + q · log(1− p − q) (14)

= p · log(p) + q · log(q) + log(2) > 0 (15)

A link to information theory
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Bernoulli example, p = 0.6

� Exponential rate of asset growth for binary channel with p=0.6
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Figure 3: Bernoulli Exponential growth rate g(f)
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Bernoulli

-4
1

-3

-2

1

-1

p

0.5

0

f

0.5

0 0
-1

-0.5

0

0.5

1

Figure 4: Bernoulli - Exponential growth rate g(f,p)
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Gaussian (One-dimensional)

� X ∼ F with E(X ) = µ and Var(X ) = σ2

� Return of the risk free asset r > 0

� Wealth given investment fractions and restriction
∑k

j=1
fj = 1

W (f ) = W0 {1 + (1− f )r + fX} (16)

= W0 {1 + r + f (X − r)} (17)
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Gaussian (One-dimensional)

� Maximize

g(f ) = E {logWn(f )} = E {G (f )} = E log {Wn(f )/W0}
(18)

� Wealth after n periods

Wn(f ) = W0

n∏
i=1

{1 + r + f (Xi − r)} (19)

� Taylor expansion of

E

[
log

{
Wn(f )

W0

}]
= E

[
n∑

i=1

log {1 + r + f (Xi − r)}

]
(20)
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Gaussian (One-dimensional)

� Given log(1 + x) = x − x2

2
+ · · ·

log {1 + r + f (X − r)} = r + f (X − r)− {r + f (X − r)}2

2
+ · · ·

(21)

≈ r + f (X − r)− X 2f 2

2
(22)

� Taking sum and expectation

E

[
n∑

i=1

log {1 + r + f (Xi − r)}

]
≈ r + f (µn − r)− σ2nf

2

2

(23)

� Myopia: taking
∑n

i=1
Xi has no impact on the solution
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Gaussian (One-dimensional)

� Result of the Taylor expansion

g(f ) = r + f (µ− r)− σ2f 2/2 +O(n−1/2). (24)

� For n −→∞, O(n−1/2) −→ 0

g∞(f ) = r + f (µ− r)− σ2f 2/2. (25)

� Di�erentiating g(f ) according to f

∂g∞(f )

∂f
= µ− r − σ2f = 0 ≺� f ∗ =

µ− r

σ2
= σ−1MPR (26)

� Betting the optimal fraction f ∗ leads to growth rate

g∞(f ∗) =
(µ− r)2

2σ2
+ r . (27)

� g∞(f ) is parabolic around f ∗ with range 0 ≤ f ∗ ≤ 2f ∗
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Gaussian - µ = 0.03, σ = 0.15, r = 0.01
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Figure 5: Gaussian approximation - Exponential growth rate g(f)
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Gaussian (Multi-dimensional)

� X ∼ N(µ,Σ) and risk free rate r > 0

Wn(f ) = W0

{
1 + r + f >(X − r)

}
(28)

� Taking logarithm and expectations on both sides leads via
Taylor series to

g(f ) = E

{
log(1 + r) +

1

1 + r
(µ− 1r)>f − 1

2(1 + r)2
f >Σf

}
(29)

� From quadratic optimization (Härdle and Simar, 2015)

f ∗ = Σ−1(µ− 1r) (30)

g∞(f ∗) = r + f ∗>Σf ∗/2 (31)
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Gaussian -
µ = [0.03 0.08], σ = [0.15 0.15], ρ = 0, r = 0.01
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Figure 6: Gaussian approximation - Exponential growth rate g(f)
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General i.i.d.

� Asymptotic dominance (in terms of wealth) of the Kelly
strategy in a general i.i.d. setting in discrete time

Figure 7: Warren Buf-

fett Figure 8: Matlab GUI
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General i.i.d.

� Investment strategy Λ =

fi ,j · · · fn,j
...

. . .
...

fi ,k · · · fn,k

 = [fi · · · fn]

I investment fractions fi from time i to n ∈ N+

I opportunities j to k ∈ N+

� Security price vector pi =

pi ,j...
pi ,k


� Return per unit invested xi =


pi,j

pi−1,j

...
pi,k

pi−1,k

.



General i.i.d. - Breiman (1961) 4-3

Discrete i.i.d. setting

� Wealth of the investor in period n

Wn(fn) = Wn−1(fn−1)
{
f >n xn

}
(32)

� Wn(fn) increases exponentially

� Log-optimal fraction through growth rate maximization at
each trial

f ∗ = argmax
f ∈Rk

E {log(Wn)} (33)
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Asymptotic outperformance

Theorem

� Myopic log-optimal strategy Λ∗ = [f ∗ · · · f ∗]
� Signi�cantly di�erent strategy Λ

E {logWn(Λ∗)} − E {logWn(Λ)} −→ ∞, (34)

� Kelly investor dominates asymptotically

lim
n→∞

Wn(Λ∗)

Wn(Λ)
a.s.−→∞ (35)

Leo Breiman on BBI:
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Minimize time to reach goal g

Theorem

� Let N(g) be the smallest n, such that Wi ≥ g , g > 0

� If equation (34) holds,

∃α ≥ 0 |= Λ, g (36)

such that

E {N∗(g)} − E {N(g)} ≤ α, (37)

� |= - independent of
� Λ∗ asymptotically minimizes the time to reach goal g



General i.i.d. - Breiman (1961) 4-6

Time invariance

Theorem

� Given a �xed set of opportunities the strategy is

I �xed fraction

I independent of the number of trials n

Λ∗ = [f ∗1 · · · f ∗n ], f ∗1 = · · · = f ∗n (38)
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Bernoulli revisited

Theorem

� Two investors with equal initial endowment, investment

fractions f1 and f2

� For exponential growth rates

Gn(f1) > Gn(f2) (39)

� the Kelly bet dominates asymptotically

lim
n→∞

Wn(f1)

Wn(f2)
a.s.−→∞ (40)



General i.i.d. - Breiman (1961) 4-8

Bernoulli revisited

Proof.

� Di�erence in exponential growth rates Gn(f ) = log
{

Wn(f )
W0

} 1
n

log

{
Wn(f1)

W0

} 1
n

− log

{
Wn(f2)

W0

} 1
n

= log

{
Wn(f1)

Wn(f2)

} 1
n

(41)

� by Borel strong law of large numbers

P

[
lim
n→∞

log

{
Wn(f1)

Wn(f2)

} 1
n

]
> 0

a.s.−→ 1. (42)
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Bernoulli revisited

Proof.

� For ω ∈ Ω, there exists N(ω) such that for n ≥ N(ω),

W0 exp {nG (f1)} >W0 exp {nG (f2)} (43)

Wn(f1) >Wn(f2) (44)

� Asymptotically

lim
n→∞

Wn(f1)

Wn(f2)
a.s.−→∞ (45)
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Utility functions

� Three types of utility theories: Thorp (1971)

I Descriptive utility - empirical data and mathematical �tting

I Predictive utility - derives utility functions out of hypotheses

I Normative utility - describe the behavior to achieve a certain

goal

� The logarithmic utility function is used in a normative way
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Conclusion

� Comparison of risk management theories
I Markowitz-approach

• arithmetic mean-variance e�cient
• maximizing single period returns
• rests on two moments

I Kelly-approach

• geometric mean-variance e�cient
• maximize geometric rate of multi-period returns
• utilizes the whole distribution
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Information

Closed form for Bernoulli trials

� Self-information (uncertainty) of outcome x

i(x) = − log P(x) = log
1

P(x)
(46)

i(x) = 0, for P(x) = 1 (47)

i(x) > 1, for P(x) < 1 (48)

� Example: For a fair coin, the change of P (x = {tail}) = 0.5

i(x) = − log2(1/0.5) = 1 bit
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Information

0 0.2 0.4 0.6 0.8 1

Probability p

0

2

4

6

8

10

In
fo

rm
at

io
n 

in
 b

it

Figure 9: Self information of an outcome given probability p
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Entropy

� Entropy as expectation of self-informations (average
uncertainty), given outcomes X = {X1, . . . ,Xn}

H(X ) = E {I (X )} = −E {log P(X )} (49)

= −
∑
x

P(x) log2 P(x) ≥ 0 (50)

� For two outcomes and p = q = 0.5

H(X ) = − (p log2 p + q log2 q)

= − (1/2 log2 1/2 + 1/2 log2 1/2) = 1 bit
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Entropy
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Figure 10: Entropy for two outcomes given probability p (1-p)
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Entropy

� Joint entropy

H(X ,Y ) = −E {log P(X ,Y )} (51)

= −
∑
x ,y

P(x , y) log P(x , y) (52)

� Conditional entropy

H(X | Y ) = −E {log P(X | Y )} (53)

= −
∑
x ,y

P(x | y) log P(x | y) (54)
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Noisy binary channel

Figure 11: Noisy binary channel
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Mutual information

� Mutual information

I (X ;Y ) = H(X )− H(X | Y ) (55)

= E

{
log

P(X | Y )

P(X )

}
(56)

� For the binary symmetric channel

I (X ;Y ) =
∑
x

∑
y

P(x , y) log
P(x , y)

P(x)P(y)
(57)

= q log(2q) + p log(2p) (58)

= p log p + q log q + log(2) (59)
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Mutual information
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Figure 12: Mutual Information for a binary channel
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Mutual information

Figure 13: Relation of Entropy and Mutual Information
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A link to information theory

� I (X ;Y ) - mutual information

I highest possible rate of information transmission in the

presented channel

I also called the channel's information carrying capacity or rate

of transmission

� Equivalence to equation (14)

I (X ;Y ) = g(f ∗) (60)

Closed form for Bernoulli trials
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A link to estimation theory

� Relative entropy or Kullback-Leibler divergence

D (P(x) || Q(x)) = −E

{
log

P(x)

Q(x)

}
(61)

=
∑
x

P(x) log
P(x)

Q(x)
≥ 0 (62)

� Relation to mutual information

I (X ;Y ) = D {P(x , y) || P(x)P(y)} (63)
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