The Kelly Growth Criterion

Niels Wesselhöfft
Wolfgang K. Härdle

International Research Training Group 1792
Ladislaus von Bortkiewicz Chair of Statistics
Humboldt-Universität zu Berlin

http://irtg1792.hu-berlin.de http://lvb.wiwi.hu-berlin.de

Portfolio choice

\square Playing Blackjack

Figure 1: 'Ed' Thorp

Figure 2: Matlab GUI

Portfolio choice

\square Wealth for discrete returns $X_{i} \in \mathbb{R}^{k}$

$$
\begin{equation*}
W_{n}(f)=W_{0} \prod_{i=1}^{n}\left(1+\sum_{j=1}^{k} f_{j} X_{j, i}\right) \tag{1}
\end{equation*}
$$

- $W_{0} \in \mathbb{R}^{+}$starting wealth
- $k \in \mathbb{N}^{+}$assets with index j
- $n \in \mathbb{N}^{+}$periods with index i
\square How to chose fraction vector $f \in \mathbb{R}^{k}$?

Managing Portfolio Risks

Two main strands

1. Mean-Variance approach: Markowitz (1952), Tobin (1958), Sharpe (1964) and Lintner (1965)
2. Kelly growth-optimum approach: Kelly (1956), Breiman (1961) and Thorp (1971)

Leo Breiman on BBI: \qquad

Outline

1. Motivation \checkmark
2. Bernoulli - Kelly (1956)
3. Gaussian - Thorp (2006)
4. General i.i.d. - Breiman (1961)
5. Appendix

Arithmetic mean maximization

\square Consider n favorable Bernoulli games with probability $\frac{1}{2}<p \leq 1(q=1-p)$ and outcome $X=1(-1)$
\square For $\mathrm{P}(X=1)=p=1$, investor bets everything, $f=1$

$$
\begin{equation*}
W_{n}=W_{0} 2^{n} \tag{2}
\end{equation*}
$$

\square Uncertainty - maximizing the expectation of wealth implies $f=1$

$$
\begin{equation*}
\mathrm{E}\left(W_{n}\right)=W_{0}+\sum_{i=1}^{n}(p-q) \mathrm{E}\left(f W_{n-1}\right) \tag{3}
\end{equation*}
$$

\square Leads to ruin asymptotically

$$
\begin{equation*}
\mathrm{P}\left(\left\{W_{n} \leq 0\right\}\right)=\mathrm{P}\left\{\lim _{n \rightarrow \infty}\left(1-p^{n}\right)\right\} \rightarrow 1 \tag{4}
\end{equation*}
$$

Minimizing risk of ruin

\square Alternative: minimize the probability of ruin
\square For $f=0$

$$
\begin{equation*}
\mathrm{P}\left(\left\{W_{n} \leq 0\right\}\right)=0 \tag{5}
\end{equation*}
$$

\square Minimum ruin strategy leads also to the minimization of the expected profits as no investment takes place

Geometric mean maximization

\square Gambler bets a fraction of his wealth with m games won

$$
\begin{equation*}
W_{n}=W_{0}(1+f)^{m}(1-f)^{n-m} \tag{6}
\end{equation*}
$$

\square Exponential rate of growth per trial (log of the geometric mean)

$$
\begin{align*}
G_{n}(f) & =\log \left(\frac{W_{n}}{W_{0}}\right)^{\frac{1}{n}}=\log \left\{(1+f)^{\frac{m}{n}}(1-f)^{\frac{n-m}{n}}\right\} \tag{7}\\
& =\left(\frac{m}{n}\right) \log (1+f)+\left(\frac{n-m}{n}\right) \log (1-f) \tag{8}
\end{align*}
$$

Geometric mean maximization

\square By Borel's law of large numbers

$$
\begin{equation*}
E\left\{G_{n}(f)\right\}=g(f)=p \cdot \log (1+f)+q \cdot \log (1-f) \tag{9}
\end{equation*}
$$

\square Maximizing $g(f)$ w.r.t. f :

$$
\begin{align*}
g^{\prime}(f) & =\left(\frac{p}{1+f}\right)-\left(\frac{q}{1-f}\right)=\left\{\frac{p-q-f}{(1+f)(1-f)}\right\}=0 \tag{10}\\
* f & =f^{*}=p-q, \quad p \geq q>0
\end{align*}
$$

\square Second derivative according to f

$$
\begin{equation*}
g^{\prime \prime}(f)=-\left\{\frac{p}{(1+f)^{2}}\right\}-\left\{\frac{q}{(1-f)^{2}}\right\}<0 \tag{12}
\end{equation*}
$$

Closed form for Bernoulli trials

\square Growth optimal fraction, under Bernoulli trials:

$$
\begin{equation*}
f^{*}=p-q \tag{13}
\end{equation*}
$$

\square Maximizes the expected value of the logarithm of capital at each trial

$$
\begin{align*}
g\left(f^{*}\right) & =p \cdot \log (1+p-q)+q \cdot \log (1-p-q) \tag{14}\\
& =p \cdot \log (p)+q \cdot \log (q)+\log (2)>0 \tag{15}
\end{align*}
$$

- A link to information theory

Bernoulli example, $p=0.6$

\checkmark Exponential rate of asset growth for binary channel with $\mathrm{p}=0.6$

Figure 3: Bernoulli Exponential growth rate g(f)

Bernoulli

Figure 4: Bernoulli - Exponential growth rate $g(f, p)$

Gaussian (One-dimensional)

$\square X \sim F$ with $\mathrm{E}(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$
\square Return of the risk free asset $r>0$
\square Wealth given investment fractions and restriction $\sum_{j=1}^{k} f_{j}=1$

$$
\begin{align*}
W(f) & =W_{0}\{1+(1-f) r+f X\} \tag{16}\\
& =W_{0}\{1+r+f(X-r)\} \tag{17}
\end{align*}
$$

Gaussian (One-dimensional)

- Maximize

$$
\begin{equation*}
g(f)=\mathrm{E}\left\{\log W_{n}(f)\right\}=\mathrm{E}\{G(f)\}=\mathrm{E} \log \left\{W_{n}(f) / W_{0}\right\} \tag{18}
\end{equation*}
$$

\checkmark Wealth after n periods

$$
\begin{equation*}
W_{n}(f)=W_{0} \prod_{i=1}^{n}\left\{1+r+f\left(X_{i}-r\right)\right\} \tag{19}
\end{equation*}
$$

\checkmark Taylor expansion of

$$
\begin{equation*}
\mathrm{E}\left[\log \left\{\frac{W_{n}(f)}{W_{0}}\right\}\right]=\mathrm{E}\left[\sum_{i=1}^{n} \log \left\{1+r+f\left(X_{i}-r\right)\right\}\right] \tag{20}
\end{equation*}
$$

Gaussian (One-dimensional)

\square Given $\log (1+x)=x-\frac{x^{2}}{2}+\cdots$

$$
\begin{align*}
\log \{1+r+f(X-r)\} & =r+f(X-r)-\frac{\{r+f(X-r)\}^{2}}{2}+\cdots \tag{21}\\
& \approx r+f(X-r)-\frac{X^{2} f^{2}}{2} \tag{22}
\end{align*}
$$

\square Taking sum and expectation

$$
\begin{equation*}
\mathrm{E}\left[\sum_{i=1}^{n} \log \left\{1+r+f\left(X_{i}-r\right)\right\}\right] \approx r+f\left(\mu_{n}-r\right)-\frac{\sigma_{n}^{2} f^{2}}{2} \tag{23}
\end{equation*}
$$

\square Myopia: taking $\sum_{i=1}^{n} X_{i}$ has no impact on the solution

Gaussian (One-dimensional)

\square Result of the Taylor expansion

$$
\begin{equation*}
g(f)=r+f(\mu-r)-\sigma^{2} f^{2} / 2+\mathcal{O}\left(n^{-1 / 2}\right) \tag{24}
\end{equation*}
$$

\square For $n \longrightarrow \infty, \mathcal{O}\left(n^{-1 / 2}\right) \longrightarrow 0$

$$
\begin{equation*}
g_{\infty}(f)=r+f(\mu-r)-\sigma^{2} f^{2} / 2 \tag{25}
\end{equation*}
$$

\checkmark Differentiating $g(f)$ according to f

$$
\begin{equation*}
\frac{\partial g_{\infty}(f)}{\partial f}=\mu-r-\sigma^{2} f=0 * f^{*}=\frac{\mu-r}{\sigma^{2}}=\sigma^{-1} \mathrm{MPR} \tag{26}
\end{equation*}
$$

\square Betting the optimal fraction f^{*} leads to growth rate

$$
\begin{equation*}
g_{\infty}\left(f^{*}\right)=\frac{(\mu-r)^{2}}{2 \sigma^{2}}+r \tag{27}
\end{equation*}
$$

$\square g_{\infty}(f)$ is parabolic around f^{*} with range $0 \leq f^{*} \leq 2 f^{*}$

Gaussian $-\mu=0.03, \sigma=0.15, r=0.01$

Figure 5: Gaussian approximation - Exponential growth rate $g(f)$

Gaussian (Multi-dimensional)

$\square X \sim \mathrm{~N}(\mu, \Sigma)$ and risk free rate $r>0$

$$
\begin{equation*}
W_{n}(f)=W_{0}\left\{1+r+f^{\top}(X-r)\right\} \tag{28}
\end{equation*}
$$

\square Taking logarithm and expectations on both sides leads via Taylor series to

$$
\begin{equation*}
g(f)=\mathrm{E}\left\{\log (1+r)+\frac{1}{1+r}(\mu-1 r)^{\top} f-\frac{1}{2(1+r)^{2}} f^{\top} \Sigma f\right\} \tag{29}
\end{equation*}
$$

\square From quadratic optimization (Härdle and Simar, 2015)

$$
\begin{array}{r}
f^{*}=\Sigma^{-1}(\mu-1 r) \\
g_{\infty}\left(f^{*}\right)=r+f^{* \top} \Sigma f^{*} / 2 \tag{31}
\end{array}
$$

Gaussian -

$$
\mu=\left[\begin{array}{ll}
0.03 & 0.08
\end{array}\right], \sigma=\left[\begin{array}{ll}
0.15 & 0.15
\end{array}\right], \quad \rho=0, r=0.01
$$

Figure 6: Gaussian approximation - Exponential growth rate $g(f)$

General i.i.d.

\square Asymptotic dominance (in terms of wealth) of the Kelly strategy in a general i.i.d. setting in discrete time

Figure 8: Matlab GUI

General i.i.d.

\square Investment strategy $\wedge=\left[\begin{array}{ccc}f_{i, j} & \cdots & f_{n, j} \\ \vdots & \ddots & \vdots \\ f_{i, k} & \cdots & f_{n, k}\end{array}\right]=\left[f_{i} \cdots f_{n}\right]$

- investment fractions f_{i} from time i to $n \in \mathbb{N}^{+}$
- opportunities j to $k \in \mathbb{N}^{+}$
\square Security price vector $p_{i}=\left[\begin{array}{c}p_{i, j} \\ \vdots \\ p_{i, k}\end{array}\right]$
\square Return per unit invested $x_{i}=\left[\begin{array}{c}\frac{p_{i, j}}{p_{i-1, j}} \\ \vdots \\ \frac{p_{i, k}}{p_{i-1, k}}\end{array}\right]$.

Discrete i.i.d. setting

\square Wealth of the investor in period n

$$
\begin{equation*}
W_{n}\left(f_{n}\right)=W_{n-1}\left(f_{n-1}\right)\left\{f_{n}^{\top} x_{n}\right\} \tag{32}
\end{equation*}
$$

$\square W_{n}\left(f_{n}\right)$ increases exponentially
\square Log-optimal fraction through growth rate maximization at each trial

$$
\begin{equation*}
f^{*}=\underset{f \in \mathbb{R}^{k}}{\operatorname{argmax}} E\left\{\log \left(W_{n}\right)\right\} \tag{33}
\end{equation*}
$$

Asymptotic outperformance

Theorem
\square Myopic log-optimal strategy $\Lambda^{*}=\left[\begin{array}{lll}f^{*} & \cdots & f^{*}\end{array}\right]$
\bullet Significantly different strategy \wedge

$$
\begin{equation*}
\mathrm{E}\left\{\log W_{n}\left(\Lambda^{*}\right)\right\}-\mathrm{E}\left\{\log W_{n}(\Lambda)\right\} \longrightarrow \infty \tag{34}
\end{equation*}
$$

\square Kelly investor dominates asymptotically

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{W_{n}\left(\Lambda^{*}\right)}{W_{n}(\Lambda)} \xrightarrow{\text { a.s. }} \infty \tag{35}
\end{equation*}
$$

Leo Breiman on BBI :

Minimize time to reach goal g

Theorem
\square Let $N(g)$ be the smallest n, such that $W_{i} \geq g, g>0$
\square If equation (34) holds,

$$
\begin{equation*}
\exists \alpha \geq 0 \Perp \Lambda, g \tag{36}
\end{equation*}
$$

such that

$$
\begin{equation*}
\mathrm{E}\left\{N^{*}(g)\right\}-\mathrm{E}\{N(g)\} \leq \alpha \tag{37}
\end{equation*}
$$

$\square \Perp$ - independent of
$\square \Lambda^{*}$ asymptotically minimizes the time to reach goal g

Time invariance

Theorem

\square Given a fixed set of opportunities the strategy is

- fixed fraction
- independent of the number of trials n

$$
\begin{equation*}
\Lambda^{*}=\left[f_{1}^{*} \cdots f_{n}^{*}\right], f_{1}^{*}=\cdots=f_{n}^{*} \tag{38}
\end{equation*}
$$

Bernoulli revisited

Theorem
\square Two investors with equal initial endowment, investment fractions f_{1} and f_{2}
\square For exponential growth rates

$$
\begin{equation*}
G_{n}\left(f_{1}\right)>G_{n}\left(f_{2}\right) \tag{39}
\end{equation*}
$$

\square the Kelly bet dominates asymptotically

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{W_{n}\left(f_{1}\right)}{W_{n}\left(f_{2}\right)} \xrightarrow{\text { a.s. }} \infty \tag{40}
\end{equation*}
$$

Bernoulli revisited

Proof.

\square Difference in exponential growth rates $G_{n}(f)=\log \left\{\frac{W_{n}(f)}{W_{0}}\right\}^{\frac{1}{n}}$

$$
\begin{equation*}
\log \left\{\frac{W_{n}\left(f_{1}\right)}{W_{0}}\right\}^{\frac{1}{n}}-\log \left\{\frac{W_{n}\left(f_{2}\right)}{W_{0}}\right\}^{\frac{1}{n}}=\log \left\{\frac{W_{n}\left(f_{1}\right)}{W_{n}\left(f_{2}\right)}\right\}^{\frac{1}{n}} \tag{41}
\end{equation*}
$$

\square by Borel strong law of large numbers

$$
\begin{equation*}
P\left[\lim _{n \rightarrow \infty} \log \left\{\frac{W_{n}\left(f_{1}\right)}{W_{n}\left(f_{2}\right)}\right\}^{\frac{1}{n}}\right]>0 \xrightarrow{\text { a.s. }} 1 . \tag{42}
\end{equation*}
$$

Bernoulli revisited

Proof.

\square For $\omega \in \Omega$, there exists $N(\omega)$ such that for $n \geq N(\omega)$,

$$
\begin{align*}
W_{0} \exp \left\{n G\left(f_{1}\right)\right\} & >W_{0} \exp \left\{n G\left(f_{2}\right)\right\} \tag{43}\\
W_{n}\left(f_{1}\right) & >W_{n}\left(f_{2}\right) \tag{44}
\end{align*}
$$

\square Asymptotically

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{W_{n}\left(f_{1}\right)}{W_{n}\left(f_{2}\right)} \xrightarrow{\text { a.s. }} \infty \tag{45}
\end{equation*}
$$

\qquad

Utility functions

\square Three types of utility theories: Thorp (1971)

- Descriptive utility - empirical data and mathematical fitting
- Predictive utility - derives utility functions out of hypotheses
- Normative utility - describe the behavior to achieve a certain goal
\square The logarithmic utility function is used in a normative way

Conclusion

\square Comparison of risk management theories

- Markowitz-approach
- arithmetic mean-variance efficient
- maximizing single period returns
- rests on two moments
- Kelly-approach
- geometric mean-variance efficient
- maximize geometric rate of multi-period returns
- utilizes the whole distribution

Information

- Closed form for Bernoulli trials

\square Self-information (uncertainty) of outcome x

$$
\begin{align*}
& i(x)=-\log \mathrm{P}(x)=\log \frac{1}{\mathrm{P}(x)} \tag{46}\\
& i(x)=0, \text { for } \mathrm{P}(x)=1 \tag{47}\\
& i(x)>1, \text { for } \mathrm{P}(x)<1 \tag{48}
\end{align*}
$$

\square Example: For a fair coin, the change of $\mathrm{P}(x=\{$ tail $\})=0.5$

$$
i(x)=-\log _{2}(1 / 0.5)=1 \mathrm{bit}
$$

Information

Figure 9: Self information of an outcome given probability p

Entropy

\square Entropy as expectation of self-informations (average uncertainty), given outcomes $X=\left\{X_{1}, \ldots, X_{n}\right\}$

$$
\begin{align*}
\mathrm{H}(X) & =\mathrm{E}\{I(X)\}=-\mathrm{E}\{\log \mathrm{P}(X)\} \tag{49}\\
& =-\sum_{x} \mathrm{P}(x) \log _{2} \mathrm{P}(x) \geq 0 \tag{50}
\end{align*}
$$

\square For two outcomes and $p=q=0.5$

$$
\begin{aligned}
H(X) & =-\left(p \log _{2} p+q \log _{2} q\right) \\
& =-\left(1 / 2 \log _{2} 1 / 2+1 / 2 \log _{2} 1 / 2\right)=1 \mathrm{bit}
\end{aligned}
$$

Entropy

Figure 10: Entropy for two outcomes given probability p (1-p)

Entropy

\square Joint entropy

$$
\begin{align*}
H(X, Y) & =-\mathrm{E}\{\log \mathrm{P}(X, Y)\} \tag{51}\\
& =-\sum_{x, y} \mathrm{P}(x, y) \log \mathrm{P}(x, y) \tag{52}
\end{align*}
$$

\checkmark Conditional entropy

$$
\begin{align*}
H(X \mid Y) & =-\mathrm{E}\{\log \mathrm{P}(X \mid Y)\} \tag{53}\\
& =-\sum_{x, y} \mathrm{P}(x \mid y) \log \mathrm{P}(x \mid y) \tag{54}
\end{align*}
$$

Noisy binary channel

Figure 11: Noisy binary channel

Mutual information

\square Mutual information

$$
\begin{align*}
I(X ; Y) & =\mathrm{H}(X)-\mathrm{H}(X \mid Y) \tag{55}\\
& =\mathrm{E}\left\{\log \frac{\mathrm{P}(X \mid Y)}{\mathrm{P}(X)}\right\} \tag{56}
\end{align*}
$$

\square For the binary symmetric channel

$$
\begin{align*}
I(X ; Y) & =\sum_{x} \sum_{y} \mathrm{P}(x, y) \log \frac{\mathrm{P}(x, y)}{\mathrm{P}(x) \mathrm{P}(y)} \tag{57}\\
& =q \log (2 q)+p \log (2 p) \tag{58}\\
& =p \log p+q \log q+\log (2) \tag{59}
\end{align*}
$$

Mutual information

Figure 12: Mutual Information for a binary channel

Mutual information

Figure 13: Relation of Entropy and Mutual Information

A link to information theory

$\square I(X ; Y)$ - mutual information

- highest possible rate of information transmission in the presented channel
- also called the channel's information carrying capacity or rate of transmission
\square Equivalence to equation (14)

$$
\begin{equation*}
I(X ; Y)=g\left(f^{*}\right) \tag{60}
\end{equation*}
$$

Closed form for Bernoulli trials

A link to estimation theory

\square Relative entropy or Kullback-Leibler divergence

$$
\begin{align*}
D(\mathrm{P}(x) \| \mathrm{Q}(x)) & =-\mathrm{E}\left\{\log \frac{\mathrm{P}(x)}{\mathrm{Q}(x)}\right\} \tag{61}\\
& =\sum_{x} \mathrm{P}(x) \log \frac{\mathrm{P}(x)}{\mathrm{Q}(x)} \geq 0 \tag{62}
\end{align*}
$$

\checkmark Relation to mutual information

$$
\begin{equation*}
I(X ; Y)=D\{\mathrm{P}(x, y) \| \mathrm{P}(x) \mathrm{P}(y)\} \tag{63}
\end{equation*}
$$

The Kelly Growth Criterion

Niels Wesselhöfft
Wolfgang K. Härdle

International Research Training Group 1792
Ladislaus von Bortkiewicz Chair of Statistics
Humboldt-Universität zu Berlin

http://irtg1792.hu-berlin.de http://lvb.wiwi.hu-berlin.de

For Further Reading

圊 J. Kelly
A new interpretation of information rate
Bell System Technology Journal, 35, 1956
嗇 L. Breiman
Optimal gambling system for favorable games Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, 1, 1961
E. O. Thorp

Portfolio choice and the Kelly criterion
Proceedings of the Business and Economics Section of the American Statistical Association, 1971

For Further Reading

圊 R. Roll
Evidence on the growth optimum model
The Journal of Finance, 1973
图 L. C. MacLean, W. T. Ziemba and G. Blazenko
Growth versus Security in Dynamic Investment Analysis
Management Science, 38(11), 1992
E. O. Thorp

The Kelly criterion in Blackjack, Sports betting and the Stock Market
Handbook of Asset and Liability Management, 2006

